Суббота, 21:05 
Заказ документов

 Заочные научно-практические конференции Всероссийского и международного уровня

+

Одноименные конкурсы с выдачей диплома с призовым местом

1 работа - 3 документа

Публикация в сборнике ISBN, УДК, ББК, СМИ

Весь пакет документов (сертификат, диплом, свидетельство, публикация) 300 руб.!!!

 

 

Произвести заказ документа или задать вопрос можно здесь, оформление 10 минут после ответа оператора!
Главная » »
Главная » Файлы » Дистанционные курсы для педагогов и учащихся » Элементы комбинаторики, статистики и теории вероятностей

Статистическое определение вероятности.
09.02.2013, 14:32
Статистическое определение вероятности
Классическое определение вероятности не требует, чтобы испытание обязательно проводилось в действительности: теоретическим способом определяются все равновозможные и благоприятствующие событию исходы. Такое определение предполагает, что число элементарных исходов испытания конечно и выражается конкретным числом. Однако на практике – при изучении случайных явлений в естествознании, экономике, медицине, производстве – часто встречаются испытания, у которых число возможных исходов необозримо велико. А в ряде случаев до проведения реальных испытаний трудно или не возможно установить равновозможность исходов испытания. Поэтому, наряду с классическим, на практике используют и так называемое статистическое определение вероятности. Для знакомства с ним требуется ввести понятие относительной частоты.
Определение: Относительной частотой события A называют отношение числа испытаний m, в которых событие появилось, к общему числу фактически произведенных испытаний n.
Таким образом, вероятность вычисляют до опыта, а относительную частоту после опыта.
Длительные наблюдения показали, что если в одинаковых условиях производят опыты, в каждом из которых число испытаний достаточно велико, то относительная частота обнаруживает свойство устойчивости. Это свойство состоит в том, что в различных опытах относительная частота изменяется мало, колеблясь около некоторого постоянного числа.
Например, по данным шведской статистики, относительная частота рождения девочек в 1935 г по месяцам характеризуется следующими числами: 0,486; 0,489; 0,490;0,471;0,478;0,482;0,462;0,484;0,485;0,491;0,482;0,473. Относительная частота колеблется около числа 0,482, которое можно принять за приближенное значение вероятности рождения девочек
Таким образом, в качестве статистической вероятности события принимают относительную частоту или число, близкое к ней.
Относительную частоту события А называют статистической вероятностью, которая обозначается
,
где mA - число экспериментов, в которых появилось событие А;
n - общее число экспериментов.
Эта формула служит для экспериментального определения частости события. Чтобы воспользоваться данной формулой необходим опытный статистический материал.
Статистическое определение. Вероятностью события называется число, относительно которого стабилизируется (устанавливается) относительная частота при неограниченном увеличении числа опытов.
В практических задачах за вероятность события принимается относительная частота при достаточно большом числе испытаний.
Из данных определений вероятности события видно, что всегда выполняется неравенство

Для определения вероятности события на основе формулы (1.1) часто используются формулы комбинаторики, по которым находится число благоприятствующих исходов и общее число возможных исходов.
Пример. Известно, что в поступившей партии из 30 швейных машинок 10 имеют внутренний дефект. Определить вероятность того, что из партии в 5 наудачу взятых машинок 3 окажутся бездефектными.
Решение. Для решения данной задачи введем обозначения. Пусть — общее число машинок, — число бездефектных машинок, — число отобранных в партию машинок, — число бездефектных машинок в отобранной партии.
Общее число комбинаций по машинок, т.е. общее число возможных исходов будет равно числу сочетаний из элементов по , т.е. . Но в каждой отобранной комбинации должно содержаться по три бездефектные машинки. Число таких комбинаций равно числу сочетаний из элементов по , т.е. .
С каждой такой комбинацией в отобранной партии оставшиеся дефектные элементы тоже образуют множество комбинаций, число которых равно числу сочетаний из элементов по , т.е. .
Это значит, что общее число благоприятствующих исходов определяется произведением . Откуда получаем
Самостоятельная работа по теме «Статистическая вероятность».
Задачи:
1. Во время тренировки в стрельбе по цели было сделано 30 выстрелов и зарегистрировано 26 попаданий. Какова относительная частота попадания по цели в данной серии выстрелов?
2. Отдел технического контроля обнаружил пять бракованных книг в партии из случайно отобранных 100 книг. Найти относительную частоту появления бракованных книг
Категория: Элементы комбинаторики, статистики и теории вероятностей | Добавил: тан71
Просмотров: 2150 | Загрузок: 5 | Рейтинг: 5.0/1
Всего комментариев: 0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]
Copyright 2010 © БОЛЬШАЯ ПЕРЕМЕНА