Среда, 21:18 
Заказ документов

 

 

Произвести заказ документа или задать вопрос можно здесь, оформление 10 минут после ответа оператора!
Главная » »
Главная » Файлы » Дистанционные курсы для педагогов и учащихся » Элементы комбинаторики, статистики и теории вероятностей

Самостоятельная работа по теме «Теория вероятностей»
09.02.2013, 14:38
Самостоятельное решение задач:
• Теорема сложения вероятностей.
1. В урне 30 шаров: 10 красных, 5 синих и 15 белых. Найти вероятность появления цветного шара.
2. На стеллаже библиотеки в случайном порядке расставлено 15 учебников, причем 5 из них в переплете. Библиотекарь берет наудачу три учебника. Найти вероятность того, что хотя бы один из взятых учебников окажется в переплете. (Решить двумя способами: с помощью 1 и 4 теорем).
3. Производится бомбометание по трем складам боеприпасов, причем сбрасывается одна бомба. Вероятность попадания в первый склад 0,01; во второй 0,008; в третий 0,025. При попадании в один из складов взрываются все три. Найти вероятность того, что склады будут взорваны.
4. Круговая мишень состоит из трех зон: I, II, III. Вероятность попадания в первую зону при одном выстреле 0,15, во вторую 0,23, в третью 0,17. найти вероятность промаха.

• Теорема умножения вероятностей.
1. Среди ста лотерейных билетов есть 5 выигрышных. Найти вероятность того, что два наудачу выбранные билета окажутся выигрышными.
2. В коробке 9 одинаковых радиоламп, 3 из которых были в употреблении. В течение рабочего дня мастеру для ремонта аппаратуры пришлось взять две радиолампы. Какова вероятность того, что обе взятые лампы были в употреблении?
3. У сборщика имеется 3 конусных и 7 эллиптических валиков. Сборщик взял один валик, а затем второй. Найти вероятность того, что первый из взятых валиков – конусный, а второй – эллиптический?
4. Бросают два игральных кубика. Какова вероятность того, что на первом кубике выпадет четное число очков, а на втором – число, меньшее 6?
5. Имеется 3 ящика, содержащих 10 деталей. В первом ящике 8, во втором 7 и в третьем 9 стандартных деталей. Из каждого ящика наудачу вынимают по одной детали. Найти вероятность того, что все три вынутые детали окажутся стандартными.

• Задачи:
1. Подбрасываем две монеты. Какова вероятность выпадения хотя бы одного герба?
2. Вероятности попадания в цель при стрельбе первого и второго орудий соответственно равны: р1=0,7; р2=0,8. Найти вероятность попадания при одном залпе (из обоих орудий) хотя бы одним из орудий.
3. Отдел технического контроля проверяет на стандартность по двум параметрам серию изделий. Было установлено, что у 8 из 25 изделий не выдержан только первый параметр, у 6 изделий – только второй, а у 3 изделий не выдержаны оба параметра. Наудачу берется одно из изделий. Какова вероятность того, что оно не удовлетворяет стандарту?
4. В лотерее выпущено n билетов, m из которых выигрывают. Гражданин купил k билетов. Какова вероятность того, что один из купленных билетов выигрышный?
5. В урну, содержащую 2 шара, опущен белый шар, после чего из нее наудачу извлечен один шар. Найти вероятность того, что извлеченный шар окажется белым, если равновозможны все возможные предположения о первоначальном составе шаров (по цвету).
6. Из 10 учеников, которые пришли на экзамен по математике, трое подготовились отлично, четверо – хорошо, двое – удовлетворительно, а один совсем не готовился – понадеялся на то, что все помнит. В билетах 20 вопросов. Отлично подготовившиеся ученики могут ответить на все 20 вопросов, хорошо – на 16 вопросов, удовлетворительно – на 10, и не подготовившиеся – на 5 вопросов. Каждый ученик получает наугад 3 вопроса из 20. Приглашенный первым ученик ответил на все три вопроса. Какова вероятность того, что он отличник?
Категория: Элементы комбинаторики, статистики и теории вероятностей | Добавил: тан71
Просмотров: 3553 | Загрузок: 6 | Рейтинг: 0.0/0
Всего комментариев: 0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]
Copyright 2010 © БОЛЬШАЯ ПЕРЕМЕНА