Среда, 22:48 
Заказ документов

 Заочные научно-практические конференции Всероссийского и международного уровня

+

Одноименные конкурсы с выдачей диплома с призовым местом

1 работа - 3 документа

Публикация в сборнике ISBN, УДК, ББК, СМИ

Весь пакет документов (сертификат, диплом, свидетельство, публикация) 300 руб.!!!

 

 

Произвести заказ документа или задать вопрос можно здесь, оформление 10 минут после ответа оператора!
Главная » »
Главная » Файлы » Дистанционные курсы для педагогов и учащихся » Элементы комбинаторики, статистики и теории вероятностей

Решение задач на применения теорем теории вероятностей.
09.02.2013, 14:37
Примеры решения вероятностных задач:

Пример 1.
Вероятность попадания в мишень для первого стрелка 0,8, а для второго – 0,6. Стрелки независимо друг от друга сделалают по одному выстрелу. Какова вероятность того, что в мишень попадет хотя бы один из стрелков?
Решение.
Введем обозначения: событие A – попадание первого стрелка, событие B – попадание второго стрелка, событие С – попадание хотя бы одного из стрелков.
Тогда, очевидно С = А + В, причем события А и В совместны. Следовательно, по формуле (3)

Так как события А и В независимы, то

Наконец, учитывая, что p(A) = 0,8, p(B) = 0,6, получаем:

Пример 2. Для поражения цели необходимо попасть в нее дважды. Вероятность первого попадания равна 0,2, затем она не меняется при промахах, но после первого попадания увеличивается вдвое. Найти вероятность того, что цель будет поражена первыми двумя выстрелами.
Решение. Пусть событие А – попадание при первом выстреле, а событие В – попадание при втором. Тогда р (А) = 0,2, р (В/А) = 0,4, р (АВ) = 0,2·0,4 = 0,08.
Пример 3. Два стрелка делают по одному выстрелу по мишени. Вероятности их попадания при одном выстреле равны соответственно 0,6 и 0,7. Найти вероятности следующих событий:
А – хотя бы одно попадание при двух выстрелах;
В – ровно одно попадание при двух выстрелах;
С – два попадания;
D – ни одного попадания.
Решение. Пусть событие Н1 – попадание первого стрелка, Н2 – попадание второго. Тогда
А = Н1 + Н2, В =Н1 События Н1 и Н2 совместны и независимы. Следовательно, р(С) = 0,6·0,7 = 0,42, р(А) = 0,6 + 0,7 – 0,42 = 0,88, р(B) = 0,6·0,3 + 0,7·0,4 = 0,46 (так как события и несовместны), р(D) = 0,4·0,3 = 0,12. Заметим, что события А и D являются противоположными, поэтому р(А) = 1 – р(D).
Пример 4. Найдем вероятность того, что при подбрасывании двух костей суммарное число очков окажется равным 5.
Решение. Возможно следующее сочетание очков на первой и второй костях:
1 + 4, 2 + 3, 3 + 2, 4 + 1 – четыре благоприятных случая (N(A) = 4). Всего возможных исходов N = 6•6 = 36 (по шесть для каждой кости). Тогда вероятность рассматриваемого события
Ответ: .
Пример 5. В среднем из 1000 аккумуляторов, поступивших в продажу, 6 неисправны. Найдите вероятность того, что один купленный аккумулятор окажется исправным.
Решение. Элементарный исход – случайно выбранный аккумулятор. Поэтому
N = 1000.
Событию А = {аккумулятор исправен} благоприятствуют 1000 – 6 = 994 исхода.
Поэтому N(A) = 994.
Тогда
Ответ: 0,994.
Пример 6. Монета бросается два раза. Какова вероятность того, что:
а) герб выпадет хотя бы один раз? б) герб выпадет два раза?
Решение. а) Пусть А - событие, состоящее в том, что в результате проведенного испытания герб выпал хотя бы один раз.
Равновозможными элементарными исходами здесь являются: ГГ, ГР, РГ, РР, т.е. N = 4. Событию А благоприятствуют исходы: ГГ, ГР, РГ, т.е. N(A) = 3.
Следовательно,
б) Пусть В - событие, состоящее в том, что в результате проведенного испытания герб выпал два раза.
Событию В благоприятствует один исход: ГГ, т.е. N(B) = 1.
Следовательно,
Ответ: а) ; б) .
Пример 7. Игральная кость бросается два раза. Какова вероятность того, что сумма выпавших очков равна 6 (событие А)?
Решение. Равновозможными элементарными исходами здесь являются пары (x, y), где x и y принимают значения: 1,2,3,4,5,6. Таким образом, общее число элементарных исходов равно N = 6 • 6 = 36.
Событию А благоприятствуют пары (1;5), (2;4), (3;3), (4;2), (5;1), число которых равно N(А) = 5.
Следовательно, .
Пример 8. В ящике лежат 6 красных и 6 синих шаров. Наудачу вынимают 8 шаров. Определите вероятность события А - все выбранные шары красные.
Решение. Р(А) = 0, т.к. это событие А - невозможное.
Ответ: 0.
Пример 9. Научная конференция проводится 3 дня. Всего запланировано 50 докладов: в первый день – 30 докладов, а остальные распределены поровну между вторым и третьим днями. Порядок докладов определяется жеребьевкой. Какова вероятность, что доклад профессора М. окажется запланированным на последний день конференции?
Решение. Так как в третий день будут слушать 10 докладов, то благоприятных исходов N(А) = 10, а всего докладов 50, т.е. равновозможных исходов N = 50. Поэтому .
Ответ: 0,2.
Пример 10. Перед началом первого тура чемпионата по теннису разбивают на игровые пары случайным образом с помощью жребия. Всего в чемпионате участвует 46 теннисистов, среди которых 19 участников из России, в том числе Ярослав Исаков. Найдите вероятность того, что в первом туре Ярослав Исаков будет играть с каким – либо теннисистом из России.
Решение. Число всех исходов N = 45. Число элементарных событий, благоприятствующих событию А равно 18. Все элементарные события равновозможны по условию задачи, поэтому
Ответ: 0,4.
Пример 11. Вася, Петя, Коля и Леша бросили жребий - кому начинать игру. Найдите вероятность того, что начинать игру должен будет Петя.
Решение: Случайный эксперимент – бросание жребия. Элементарное событие в этом эксперименте – участник, который выиграл жребий. Перечислим их:
(Вася), (Петя), (Коля) и (Лёша).
Общее число элементарных событий N = 4. Жребий подразумевает, что элементарные события равновозможны. Событию A = {жребий выиграл Петя}
благоприятствует только одно элементарное событие (Петя). Поэтому N(A)=1.
Тогда .
Ответ: 0,25.

Пример 12. Игральный кубик (кость) бросили один раз. Какова вероятность того, что выпало число очков, больше чем 4?
Решение: Случайный эксперимент – бросание кубика. Элементарное событие –число на выпавшей грани. Граней всего шесть. Перечислим все элементарные события: 1,2,3,4,5 и 6. Значит, N=6. Событию A={выпало больше, чем 4} благоприятствует два элементарных события: 5 и 6. Поэтому N(A) = 2. Элементарные события равновозможны, поскольку подразумевается, что кубик честный. Поэтому .
Ответ: .
Пример 13. В случайном эксперименте бросают два игральных кубика. Найдите вероятность того, что в сумме выпадет 8 очков.
Решение: Элементарный исход в этом опыте – порядочная пара чисел. Первое число выпадает на первом кубике, а второе – на втором. Множество элементарных исходов удобно представить таблицей. Строки соответствуют результату первого броска, столбцы – результату второго броска. Всего элементарных событий N = 3.
1 2 3 4 5 6
2 3 4 5 6 7
3 4 5 6 7 8
4 5 6 7 8 9
5 6 7 8 9 10
6 7 8 9 10 11
7 8 9 10 11 12
1
2
3
4
5
6

Напишем в каждой клетке таблицы сумму выпавших очков и закрасим клетки где сумма равна 8. Таких ячеек 5. Значит событию А = {сумма равна 8} благоприятствует пять элементарных исходов. Следовательно, N(A) = 5.
Поэтому

Ответ:
Пример 14. В случайном эксперименте монету бросили три раза. Какова вероятность того, что орел выпал ровно два раза?
Решение: Орёл обозначим буквой О, решку – буквой Р. В описанном эксперименте элементарные исходы – тройки, составленные из букв О и Р. Выпишем все их в таблицу:

Элементарный исход Число орлов
ООО 3
ООР 2
ОРО 2
ОРР 1
РОО 2
РОР 1
РРО 1
РРР 0

Всего исходов получилось 8. Значит, N=8. Событию А = {орёл выпал ровно два раза} благоприятствует элементарные события ООР, ОРО, РОО. Поэтому N(A)=3. Тогда
Ответ: 0,375.
Пример 15. В соревнованиях по толканию ядра участвуют 4 спортсмена из Финляндии, 7 спортсменов из Дании, 9 спортсменов из Швеции и 5- из Норвегии. Порядок, в котором выступают спортсмены, определяется жребием. Найдите вероятность того, что спортсмен, который выступает последним, окажется из Швеции.
Решение:Элементарный исход – спортсмен, который выступает последним. Последним может оказаться любой спортсмен. Всего спортсменов N=4+7+9+5+5=25. Событию А = {последний из Швеции} благоприятствуют только 9 исходов (столько, сколько участвует шведских спортсменов). Поэтому N(A)=9.
Тогда
Ответ: 0,36.

Пример 16. В чемпионате по гимнастике участвуют 20 спортсменок: 8 из России, 7 из США, остальные – из Китая. Порядок, в котором выступают гимнастки, определяется жребием. Найдите вероятность того, что спортсменка, выступающая первой, окажется из Китая.
Решение:Элементарные события – спортсменка, выступающая первой. Поэтому N=20. Чтобы найти число элементарных событий, благоприятствующих событию А = {первой выступает спортсменка из Китая}, нужно подсчитать число спортсменок из Китая: N(A)=20-(8+7)=5. Все элементарные события равновозможны по условию задачи, поэтому
Ответ: 0,25.

Пример 17. Фабрика выпускает сумки. В среднем на 100 качественных сумок приходится восемь сумок со скрытыми дефектами. Найдите вероятность того, что купленная сумка окажется качественной. Результат округлите до сотых.
Решение: Элементарный исход – случайно выбранная сумка. Поэтому N = 108.
Событию А = {качественная сумка} благоприятствуют 100 исходов.
Поэтому N(A) = 100.
Тогда
Ответ: 0,93.
Категория: Элементы комбинаторики, статистики и теории вероятностей | Добавил: тан71
Просмотров: 2074 | Загрузок: 5 | Рейтинг: 5.0/1
Всего комментариев: 0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]
Copyright 2010 © БОЛЬШАЯ ПЕРЕМЕНА